Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481102

ABSTRACT

The use of fast in silico prediction methods for protein-ligand binding free energies holds significant promise for the initial phases of drug development. Numerous traditional physics-based models (e.g., implicit solvent models), however, tend to either neglect or heavily approximate entropic contributions to binding due to their computational complexity. Consequently, such methods often yield imprecise assessments of binding strength. Machine learning models provide accurate predictions and can often outperform physics-based models. They, however, are often prone to overfitting, and the interpretation of their results can be difficult. Physics-guided machine learning models combine the consistency of physics-based models with the accuracy of modern data-driven algorithms. This work integrates physics-based model conformational entropies into a graph convolutional network. We introduce a new neural network architecture (a rule-based graph convolutional network) that generates molecular fingerprints according to predefined rules specifically optimized for binding free energy calculations. Our results on 100 small host-guest systems demonstrate significant improvements in convergence and preventing overfitting. We additionally demonstrate the transferability of our proposed hybrid model by training it on the aforementioned host-guest systems and then testing it on six unrelated protein-ligand systems. Our new model shows little difference in training set accuracy compared to a previous model but an order-of-magnitude improvement in test set accuracy. Finally, we show how the results of our hybrid model can be interpreted in a straightforward fashion.

3.
ACM BCB ; 20232023 Sep.
Article in English | MEDLINE | ID: mdl-38706556

ABSTRACT

Structure-based drug discovery aims to identify small molecules that can attach to a specific target protein and change its functionality. Recently, deep learning has shown great promise in generating drug-like molecules with specific biochemical features and conditioned with structural features. However, they usually fail to incorporate an essential factor: the underlying physics which guides molecular formation and binding in real-world scenarios. In this work, we describe a physics-guided deep generative model for new ligand discovery, conditioned not only on the binding site but also on physics-based features that describe the binding mechanism between a receptor and a ligand. The proposed hybrid model has been tested on large protein-ligand complexes and small host-guest systems. Using the top-N methodology, on average more than 75% of the generated structures by our hybrid model were stronger binders than the original reference ligand. All of them had higher ΔGbind (affinity) values than the ones generated by the previous state-of-the-art method by an average margin of 1.88 kcal/mol. The visualization of the top-5 ligands generated by the proposed physics-guided model and the reference deep learning model demonstrate more feasible conformations and orientations by the former. The future directions include training and testing the hybrid model on larger datasets, adding more relevant physics-based features, and interpreting the deep learning outcomes from biophysical perspectives.

4.
Biomolecules ; 12(7)2022 06 29.
Article in English | MEDLINE | ID: mdl-35883475

ABSTRACT

Calculation of protein-ligand binding affinity is a cornerstone of drug discovery. Classic implicit solvent models, which have been widely used to accomplish this task, lack accuracy compared to experimental references. Emerging data-driven models, on the other hand, are often accurate yet not fully interpretable and also likely to be overfitted. In this research, we explore the application of Theory-Guided Data Science in studying protein-ligand binding. A hybrid model is introduced by integrating Graph Convolutional Network (data-driven model) with the GBNSR6 implicit solvent (physics-based model). The proposed physics-data model is tested on a dataset of 368 complexes from the PDBbind refined set and 72 host-guest systems. Results demonstrate that the proposed Physics-Guided Neural Network can successfully improve the "accuracy" of the pure data-driven model. In addition, the "interpretability" and "transferability" of our model have boosted compared to the purely data-driven model. Further analyses include evaluating model robustness and understanding relationships between the physical features.


Subject(s)
Neural Networks, Computer , Proteins , Ligands , Physics , Protein Binding , Proteins/chemistry , Solvents/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...